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Abstract. Quantum canonical transformations corresponding to time-dependent diffeomor-
phisms of the configuration space are studied. A special class of these transformations which
correspond to time-dependent dilatations is used to identify a previously unknown class of ex-
actly solvable time-dependent harmonic oscillators. The Caldirola–Kanai oscillator belongs to
this class. For a general time-dependent harmonic oscillator, it is shown that choosing the
dilatation parameter to satisfy the classical equation of motion, one obtains the solution of
the Schr̈odinger equation. A simple generalization of this result leads to the reduction of the
Schr̈odinger equation to a second-order ordinary differential equation whose special case is
the auxiliary equation of the Lewis–Riesenfeld invariant theory. The time-evolution operator
is expressed in terms of a positive real solution of this equation in a closed form, and the
time-dependent position and momentum operators are calculated.

1. Introduction

It is well known that in quantum mechanics the unitary transformations of Hilbert space
correspond to the canonical transformations of classical mechanics. Unfortunately, the
quantum canonical transformationsare not as widely used as their classical counterparts.
The purpose of this paper is to study the class of quantum canonical transformations defined
by

U := exp

[
iε(t)

2
{f (x), p}

]
= exp

[
iε(t)

√
f (x)p

√
f (x)

]
(1)

and demonstrate their utility in solving the Schrödinger equation for time-dependent
harmonic oscillators‡.

Time-dependent harmonic oscillators have been the subject of active research since the
1940s [1–14]. This is because of the long list of applications of this system in modelling a
variety of physical phenomena. Some recent applications of the time-dependent harmonic
oscillators are in the study of the motion of ions in a Paul trap [9], quantum mechanical
description of highly cooled ions [10], and the emergence of nonclassical optical states of
light owing to a time-dependent dielectric constant [11].

An interesting property of time-dependent harmonic oscillators is that the solution of the
Schr̈odinger equation for this system can be reduced to that of the corresponding classical

† E-mail address: amostafazadeh@ku.edu.tr
‡ In equation (1), x and p denote position and momentum operators, respectively,{ , } stands for the
anticommutator of two operators, andf andε are arbitrary real-valued smooth functions.
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equation of motion [3]. It turns out that this reduction may be performed using a canonical
transformation of the form (1). More generally, it is shown that the Schrödinger equation
may be reduced to the solution of a certain second-order ordinary differential equation which
involves a parameterk2 with values−1, 0, and 1. Any positive real solution of this equation
with any of the choices fork2 yields the solution of the Schrödinger equation. Fork2 = 0,
one obtains the classical equation of motion. Fork2 = 1, one finds the auxiliary equation
of the invariant theory of Lewis and Riesenfeld [5].

The organization of this paper is as follows. In section 2 general results regarding time-
dependent quantum canonical transformations (1) and their special case corresponding to
f (x) = x are presented. These are then used in section 3 to treat time-dependent harmonic
oscillators. Section 4 is devoted to the quantum canonical transformation which leads to the
reduction of the Schrödinger equation to the classical equation of motion. The generalization
of this result, its connection with the invariant theory, and the calculation of the evolution
operator and the Heisenberg observables are also discussed in this section. Section 5 deals
with the canonical transformations corresponding to time-dependent diffeomorphisms which
change the metric of the space. The conclusions are presented in section 6.

2. Time-dependent quantum diffeomorphisms and dilatations

Let us first recall the effect of a general time-dependent quantum canonical transformation
U = U(t) on the HamiltonianH = H(t) and the time-evolution operatorU = U(t), i.e.
the relations

H(t)→ H ′(t) = U(t)H(t)U†(t)− iU(t)U̇ †(t) (2)

U(t)→ U ′(t) = U(t)U(t)U†(0) (3)

where a dot means a time-derivative and ¯h is set to unity. These equations are direct
consequences of the requirement that the Schrödinger equation

H(t)U(t) = iU̇ (t) U(0) = 1 (4)

must be preserved under the action ofU . Note that under a time-dependent quantum
canonical transformation the Hamiltonian undergoes an affine (nonlinear) transformation.
Hence, unlike the dynamics (Schrödinger equation) the energy spectrum is not preserved.

Next let us study the effect of the transformation induced by (1). In order to compute
the transformed HamiltonianH ′, one must first explore the effect ofU on the position and
momentum operators. A rather lengthy calculation shows that

x → x ′ := UxU† = F1(x) (5)

p→ p′ := UpU† = 1
2{F2(x), p} =

√
F2(x)p

√
F2(x) (6)

where

F1(x) := eε(t)f (x)
d

dx x F2(x) := f (x)eε(t)f (x) d
dx f −1(x).

In the derivation of these formulae use is made of the Baker–Campbell–Hausdorff formula:

eABe−A = B + [A,B] + 1

2!
[A, [A,B]] + · · ·

as well as the identities[
i

2
{f1(x), p}, f2(x)

]
= f1(x)

d

dx
f2(x) (7)[

i

2
{f1(x), p}, i

2
{f2(x), p}

]
= i

2
{f3(x), p} f3(x) := f1

d

dx
f2(x)− f2

d

dx
f1(x) (8)
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wheref1 andf2 are arbitrary differentiable functions.
Equations (7) and (8) show that12{f (x), p} generate diffeomorphisms ofR.

Consequently, the transformations (1) are quantum canonical transformations associated
with time-dependent diffeomorphisms of the configuration space.

In view of equations (2), (5) and (6), one has

H ′ = H ′(x ′, p′; t) = H(x ′, p′; t)− ε̇(t)
2
{f (x), p}. (9)

Now let us concentrate on a subclass of quantum canonical transformations of the form
(1) corresponding to the choicef (x) = x. In this case, equations (5), (6) and (9) reduce to

x → x ′ = eε(t)x p→ p′ = e−ε(t)p (10)

H → H ′ = H(x ′, p′; t)− ε̇(t)
2
{x, p}. (11)

Hence, this choice yields time-dependent dilatations of the configuration space.
For a Hamiltonian of the standard form

H = p2

2m(t)
+ V (x, t). (12)

Equations (10) and (11) lead to

H ′ = p2

2m(t)e2ε(t)
+ V (eε(t)x, t)− ε̇(t)

2
{x, p}. (13)

Therefore the transformed Hamiltonian is not of the standard form (12). It can, however,
be put in this form by the canonical transformation defined by

U ′ = exp

[−i

2
(ε̇me2ε)x2

]
. (14)

This leads to

x → x ′′ = x p→ p′′ = p +me2ε ε̇x (15)

H ′ → H ′′ = p2

2me2ε
+ V (eεx, t)+ 1

2

[
d

dt
(me2ε ε̇)−me2ε ε̇2

]
x2. (16)

3. Time-dependent harmonic oscillator

The Hamiltonian of a time-dependent harmonic oscillator with massm = m(t) and
frequencyω = ω(t) is given by

H = p2

2m(t)
+ 1

2
mω(t)2x2. (17)

For this system equation (16) takes the form

H ′′ = p2

2me2ε
+ 1

2

[
d

dt
(me2ε ε̇)+me2ε(ω2− ε̇2)

]
x2 (18)

where time dependence ofm, ω andε are suppressed for brevity.
Next let us chooseε(t) = ln[m0/m(t)]/2 for a positive constantm0, so thatme2ε = m0.

This choice yields

H ′′ = p2

2m0
+ 1

2
m0�

2x2 (19)
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which is the Hamiltonian for a harmonic oscillator with constant massm0 and frequency

� :=
√
ε̈ − ε̇2+ ω2. (20)

Requiring� to be independent of time, one can exactly solve the Schrödinger equation
for H ′′ which is now time independent. Using the canonical transformation defined by
U ′′ := (U ′U)† and equation (3), one then finds the exact solution of the Schrödinger equation
for the original harmonic oscillator. Thus the requirement� = �0 = constant corresponds
to a class of exactly solvable time-dependent harmonic oscillators. Note that although time-
dependent harmonic oscillators have been extensively studied during the past five decades
[1–14], for arbitrary choices of massm(t) and frequencyω(t) a closed expression for the
time-evolution operator in terms ofm(t) andω(t) is not yet known.

Next let us re-express the condition� = �0 in terms ofm andω. This leads to

ε̈ − ε̇2+ α2 = 0 α :=
√
ω2−�2

0 (21)

or alternatively

ω =
√
�2

0+
m̈

2m
−
(
ṁ

2m

)2

. (22)

Hence, according to the above argument, the time-dependent oscillators whose massm

and frequencyω satisfy (22) are canonically equivalent to the time-independent harmonic
oscillator (19) with� = �0.

Next let us consider the case where the frequencyω is constant. Then equation (22)
can be easily integrated to yield

m(t) = m0(µeαt + νe−αt )2 (23)

where µ and ν are constants. Clearly, the Caldirola–Kanai oscillator [1] whose mass
depends exponentially on time, i.e.m = m0eγ t belongs to this class of oscillators. In fact,
Colegrave and Abdalla [12] have considered using the canonical transformation (10) to
treat the oscillators with time-dependent mass and fixed frequency, and in particular the
Caldirola–Kanai oscillator. However, they perform the canonical transformation within the
classical context and then quantize the Hamiltonian. Fortunately the hermiticity requirement
determines the quantum Hamiltonian uniquely. Hence the lack of knowledge about the
precise unitary transformation corresponding to this canonical transformation does not play
much of a role in their analysis.

4. Quantum to classical reduction of the dynamical equation and the Ermankov
equation

Consider the transformed harmonic oscillator Hamiltonian (18). If the square bracket on
the right-hand side of (18) vanishes, i.e.

d

dt
(me2ε ε̇)+me2ε(ω2− ε̇2) = 0 (24)

thenH ′′ describes a free particle with time-dependent mass. The corresponding Schrödinger
equation is exactly solvable. This means that if one choosesε such that the requirement
(24) is satisfied, then one obtains the solution of the Schrödinger equation for the most
general time-dependent harmonic oscillator.
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Now if one introducesχ := eε and expresses equation (24) in terms ofχ , one obtains

d

dt
(mχ̇)+mω2χ = 0. (25)

It is not difficult to recognize this equation as the classical equation of motion for the
time-dependent harmonic oscillator.

The reduction of the Schrödinger equation to the classical equation of motion has been
known since the 1950s, [3, 7, 13]. It is nevertheless interesting to see that this reduction
may be performed using a canonical transformation.

It should be emphasized that any positive real solution of equation (25) may be used
to obtain the exact solution of the Schrödinger equation for the time-dependent harmonic
oscillator (17). If a positive solution of (25) is found, then the time-evolution operator for
the oscillator (17) is given by

U(t) = U(t)†U(t)′†V (t)U ′(0)U(0) (26)

where

U(t) := e
i
2 (lnχ){x,p}

U ′(t) := e−
i
2 (mχχ̇)x

2

V (t) := e−ia(t)p2/2

a(t) :=
∫ t

0

dt ′

m(t ′)χ(t ′)2
.

A slight generalization of condition (24) is to demand that the adiabatic approximation
yields the exact solution of the Schrödinger equation for the transformed Hamiltonian (18).
In view of the results reported in [14], the condition of the exactness of the adiabatic
approximation for a time-dependent harmonic oscillator is that the product of its mass and
frequency be a constantk. For the oscillator (18), this means[

d

dt
(me2ε ε̇)+ e2ε(ω2− ε̇2)

]
me2ε = k2. (27)

In terms of the variableχ := eε , equation (27) has the form[
d

dt
(mχ̇)+mω2χ

]
mχ3 = k2. (28)

For k = 0, it reduces to equation (25). Fork 6= 0, a simple rescaling ofχ by
√|k|, namely

χ → χ ′ := χ/√|k|, leads to[
d

dt
(mχ̇ ′)+mω2χ ′

]
mχ

′3 = ±1 (29)

where the minus sign corresponds to the case where the transformed oscillator (18) has
imaginary frequency. This means that the relevant values ofk2 in (28) are−1, 0 and
1. Again any positive solution of any of the equations (29) leads to the solution of the
Schr̈odinger equation. The time-evolution operator is still given by equation (26), but now

V (t) := e−iα(t)(p2+k2x2)/2.

Having obtained the expression for the time-evolution operator, one can easily compute
the time-dependent position and momentum operators. The result is

x(t) = a(t)x + b(t)p p(t) = c(t)x + d(t)p (30)
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where

a :=
(
χ

χ0

)[
cos(kα)− m0χ0χ̇0 sin(kα)

k

]
b := χ0χ sin(kα)

k

c :=
(
mχ̇

χ0
− m0χ̇0

χ

)
cos(kα)−

(
k

χ0χ
+ m0χ̇0mχ̇

k

)
sin(kα)

d :=
(
χ0

χ

)
cos(kα)+

(
χ0mχ̇

k

)
sin(kα)

m0 := m(0) χ0 := χ(0) χ̇0 := χ̇(0).
The expressions corresponding tok = 0 are obtained from (30) in the limitk → 0. One
can check that indeedx(0) = x, p(0) = p, and [x(t), p(t)] = i.

It is remarkable to note that using the (quadratic) invariant theory of Lewis and
Riesenfeld [5], Lewis [4] had reduced the solution of the Schrödinger equation for a
harmonic oscillator with time-dependent frequency to the solution of equation (28) with
k = 1. This equation was previously considered by Ermankov [15]. Here we obtained this
equation by demanding that the adiabatic approximation yields the exact solution of the
Schr̈odinger equation for the canonically transformed system.

One may generalize the results of this section by performing other time-dependent
canonical transformations and demanding the result to be exactly solvable. For example
by requiring the transformed Hamiltonian (18) to be one of the exactly solvable oscillators
obtained in [14], one obtains various generalizations of equation (28). These are, however,
integro-differential equations whose solution seems to be at least as difficult as equation (28).

5. Time-dependent diffeomorphisms which change the metric

The time-dependent dilatations which correspond to the choicef (x) = x in (1) form a very
small class of quantum canonical transformations of the form (1). As can be seen from
equations (5) and (6) the transformations induced on the position and momentum operators
depend in a complicated manner onf (x). Some other choices off (x) for which these
transformations can be calculated in a closed form are

f (x) = x2 :

{
x → x ′ = x

1− ε(t)x
p→ p′ = [1− ε(t)x]p[1− ε(t)x]

}
for |ε(t)x| < 1

f (x) = e−λx :


x → x ′ = 1

λ
ln[eλx + ε(t)λ]

p→ p′ =
√

1+ ε(t)e
λx

λ
p

√
1+ ε(t)e

λx

λ

 for |ε(t)λ| < 1

(31)

whereλ is a positive real number. As seen from these formulae, the effect of these canonical
transformations on the kinetic partp2/2m of the Hamiltonian is to make the massm also
depend on the position. This is precisely what happens when one considers a free particle
moving on a line with a metricg. In this case the quantum Hamiltonian is given by [16]

H = 1

2m
[g−1/4pg−1/2p g−1/4]. (32)

It is uniquely determined by the classical HamiltonianHc = p2/(2mg) and the self-
adjointness requirement with respect to the measure

√
g dx.
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In view of equations (32) and (6), one can easily infer the fact that under the canonical
transformations (1) a free particle inR with the metricg(x) = 1 is mapped to a free particle
in R with a metricg = [F2]−2. This is precisely the metric one would obtain by performing
the diffeomorphismx → x ′ = F1. The converse of this statement is also true in the sense
that for an arbitrary metricg = g(x; t), there is a canonical transformation of the form (1)
which maps the problem to the ordinary one-dimensional free-particle problem provided
that one can solve the pseudodifferential equation

f (x)eε(t)f (x)
d

dx f −1(x) =: F2(x) = [g(F1(x); t)]−1/2 := [g(eε(t)f (x)
d

dx x; t)]−1/2

for f (x). For the examples listed in (31), one has

f = x2⇐⇒ g = [1− ε(t)x]−4

f = e−λx ⇐⇒ g =
[

1+ ε(t)e
λx

λ

]−2

.

These considerations show that the one-dimensional quantum mechanics of a free
particle with position- (and time-)dependent mass is canonically equivalent to that of a
free particle with constant mass.

6. Conclusion

In this paper I have explored the quantum canonical transformations corresponding to
time-dependent diffeomorphisms of the configuration spaceR. A special class of these
transformations which are associated with the time-dependent dilatations is used to obtain a
new class of exactly solvable time-dependent harmonic oscillators. A well known oscillator
which belongs to this class is the Caldirola–Kanai oscillator.

Another application of time-dependent dilatations is in the reduction of the Schrödinger
equation for the general time-dependent harmonic oscillator to the corresponding classical
equation of motion. Although the relation between the quantum and classical dynamical
equations is well known, its direct realization via time-dependent dilatations is a new result.
More specifically, I have shown that:

—if one uses a positive solutionχ = χ(t) of the classical equation of motion (25) to
perform the time-dependent quantum dilatationx → χ(t)x, then one obtains the solution
of the Schr̈odinger equation;

—if one performs a quantum dilatationx → χ(t)x, canonically transforms the resulting
generalized harmonic oscillator Hamiltonian to a Hamiltonian of the standard form, and
requires the adiabatic approximation to yield the exact solution of the Schrödinger equation
for the latter Hamiltonian, then one obtains a second-order differential equation in the
dilatation parameterχ which involves a parameterk2 = −1, 0, 1. For k = 0, this is the
classical equation of motion. Fork = 1, this is known as the Ermankov equation which
is also obtained by applying the Lewis–Riesenfeld invariant theory to the time-dependent
harmonic oscillator.

I have also briefly commented on the quantum canonical transformations which
correspond to metric-changing diffeomorphisms.

The direct generalization of the analysis presented in this paper to higher dimensions is
not difficult. In fact, then-dimensional analogue of (1), i.e.

U := exp

[
iε(t)

2

n∑
i=1

{f i(x), pi}
]
= exp

[
iε(t)

n∑
i=1

√
f i(x)pi

√
f i(x)

]
(33)
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corresponds to diffeomorphisms ofRn. Herex = (x1, . . . , x2) andf i(x) are smooth real-
valued functions ofx. For n > 1 there are metrics onRn which are not related to the
Euclidean metric by a diffeomorphism. Thus, in general canonical transformations of the
form (33) do not relate the dynamics of a free particle on an arbitrary curvedRn to that of
Rn with Euclidean geometry.
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